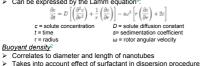
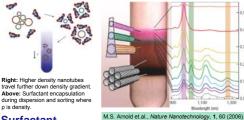
Spectroscopic Analysis of Single-Walled Carbon Nanotubes Sorted by Density-Gradient Ultracentrifugation

Liang Liu, Yuhei Miyauchi, Zhengyi Zhang, Junichiro Shiomi and Shigeo Maruyama Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan

Introduction

A significant barrier in efforts toward characterization of single-walled carbon nanotubes (SWNTs) is the inability to separate nanotubes by size, chirality and electronic type. Much of recent research focuses on post-production sorting of SWNTs. One promising method for post production sorting takes advantage of differences in buoyant densities of nanotubes and their interactions with different surfactant encapsulating agents¹⁻³.


Objectives


- > Find experimental parameters ideal for isolation of SWNTs based on chirality
 - Investigate effect of surfactant type in dispersion
 - Investigate effectiveness of sorting SWNTs grown by different methods
 - Refine method for creating density gradient
- > Evaluate effectiveness of separation through spectroscopy Photoluminescence (PL)
 - Optical absorption

Background

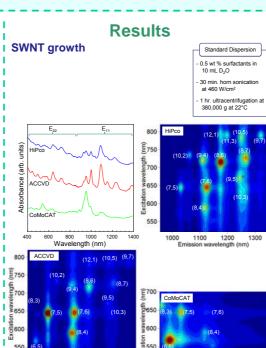
Two main factors contributing to sorting of SWNTs

- Sedimentation coefficient³ Eunction of substance's distance from axis of rotation
 - Can be expressed by the Lamm equation⁴

Surfactant

Structural differences in surfactants used account for difference in interaction with SWNTs of different chirality

Sodium deoxycholate (DOC)


Sodium linear-Dodecylbenzenesulfonate standard (SDBS)6

Procedure

- Nanotube samples were dispersed in D₂O with different surfactants using horn sonication and ultra centrifugation with a fixed rotor
- After centrifugation, upper half of solutions were saved for later sorting Carbon nanotubes were then layered on top of a density gradient and placed in
- ultracentrifugation with a swing rotor for 10 12 hours. Lavers of nanotubes were then extracted from top by layers and diluted as necessary for spectroscopy analysis
- PL and absorption spectroscopy were taken for each layer

Density gradient

- 60% concentration w/v iodixanol solution diluted with D2O to create concentrations between 7.5% and 22.5% with 2% w/v surfactants each layer
- Layers were deposited from top with a micropipette Tubes were then covered and laid flat to allow for dispersion4.

400 800 2a

1000 1100 1200 1300 ngth (nm)

Density gradient ultracentrifugation

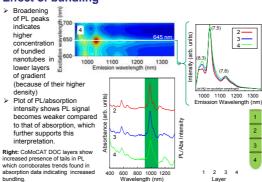
1300

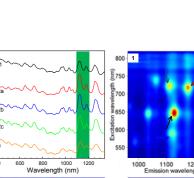
1200

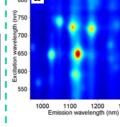
Emission wavelength (nm)

iddle bottor iodixanol 800 1000 1200

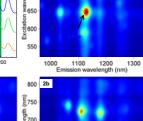
1000


đ


Isolation of specific chiralities was very difficult. Major trends observed were:


- > As consistent with previous research, bile salts (SC and DOC) serve as better surfactants for sorting SWNTs than SDBS
- Bundling increases going down the gradient
- Iodixanol signal becomes stronger in lower regions
- Iodixanol intensity in absorption spectra does not increase linearly

Left: Absorption spectrum of HiPco SC layers after centrifugation shows changes in relative peak intensities and widening of peak


Effect of bundling

Partial sorting

Conclusion

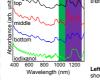
- While spectroscopy analysis indicated partial sorting was accomplished, successive cycles may be necessary
- Effect of bundling observed even in the upper layers suggests inadequate dispersion or possibly rebundling during centrifugation process
- Higher concentrations of iodixanol drowns out signals emitted by nanotubes in longer E₁₁ wavelength range

Improvements

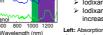
- Surfactant mixtures and improvements in conditions in dispersion technique can decrease concentration of bundled nanotubes
- Density gradients of a narrower range should be used
- Centrifugation time should be optimized Fractionation should immediately follow sorting
- Improvement in fractionation needed to minimize post sorting mixing of layers
- Thinner layers should be extracted for spectroscopy analysis

References

- mold, S.I. Stupp and M.C. Hersam, Nano mold, A.A. Green, J.F. Hulvat, S.I. Stupp,
- , Adv. Funct. Mater. 14, 11 D.M. Bergey, A.T. Johnson aham. FASEB J. 11, A908


Acknowledgements

inv thanks to e (Rice University), for the HiPco SWNT samp


> Research conducted at the University of Tokyo as a participant in the Rice University and NSF-PIRE sponsored NanoJapan 2007 program

RICE

THE UNIVERSITY OF TOKYO

1100

