

Non-Contact Atomic Force Microscopy **Fabrication of Gold Nanowire Electrodes**

Jennifer Gillenwater, Masayuki Hamada, Kotone Akiyama, Toyoaki Eguchi, Yukio Hasegawa The Institute for Solid State Physics, The University of Tokyo; Kashiwa, Japan

kHz) using an ion coater.

Deposit 100nm thick gold coating on tip

.....

SPM controller (RHK SPM-100)

phase-locked loop (PLL)

XPMPro, software for the

Parameter adjustment by:

controller (nanoSurf)

SPM controller

of conventional Si cantilever (f₀ ≈ 250

Lithography Methods

Tip Preparation

SEM

image of

gold-oated tin

Next Steps

Pulse optimization by

parameter adjustment

amplitude

setpoint

strength

set alfest > scanned area's centerie of (6000, 4030) # of the total passes in scanle to

C 15 C oo # pen absolute (15,10) Istalie — # distalie, diospt - 1 ium off Spesibook

Didetske # detske, doger - man, ... Didetske Bioretake # ser the Z DAC to 5V = # imger the voltace gale in the Didet # # presenter blev are not Diversite. # Syst the 2 DAC back to Dr Didet # Australe back on agen

Caol Arelum genito (0.0)

ordistic 1 billing sets to as the RC on

• A_{opp} = operating

Δf = tip-sample force

V = pulse voltage

t = pulse duration

set to minimum)

Results

- Successfully deposited dots of diameter ~40nm
- Begun pulse parameter manipulation, examining effects on:
- Various AFM signals $(\Delta f. photodetector, z)$
- Success/failure of dot deposition
- Size of dots deposited

ON an contact, doits obtained

- · D = dissipation (always
 - Interfacing with LithoEdit programs to speed and abstract the drawing procedure—sample LithoEdit program for drawing a dot at position (15, 10)

Conclusions

A FM-AFM system provides greater force-distance control than an AM system, but FM-AFM is a newer field whose capabilities outside of UHV conditions have not been extensively investigated. This work is concerned with developing a FM-AFM system for use in less controlled atmospheric conditions, which may yield a valuable tool for many applications beyond lithography.

Possible application of these wires:

Within the scope of this particular experiment, FM-AFM improvement coupled with use of a unique, sharp gold tip could provide a precise enough system for sub-10 nm wire fabrication

such as pentacene, a promising material for use in organic thin-film transistors (TFTs) of liquid crystal displays (LCDs).

Sources

- [1] Dadosh T, Gordin Y, Ktahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, and Bar-Joseph I, Nature **436**, 667 (2005). [2] M. E. Pumarol, Y. Miyahara, R. Gagnon, and P. Grutter, Nanotechnology **16**, 1083-
- 1088 (2005) [3] Kotone Akiyama, T. Eguchi, T. An, Y. Fujikawa, Y. Yamada-Takamura, T. Sakurai, and Y. Hasegawa. Review of Scientific Instruments 76. 033705 (2005).

Problem Statement & Goals

Problem Statement

Creation of sub-10 nm electrodes is crucial for conductance measurements of small molecules, such as pentacene. This conductance analysis is impossible with larger-scale electrodes, since many small molecules can simultaneously bridge a larger electrode gap. The result is collection of bulk data, which has been shown to be the theoretical equivalent of having nothing between the electrodes at all [1].

Goals

Replication of results published by another group in 2005: consistent production of ~40nm wide gold nanowires, up to 55µm in length [2]

· Minimization of wire size by: -improvement of FM-AFM techniques -use of a unique cantilever with a sharp gold tip [3]

AFM Background

Basic Characterization

- Scanning probe microscope capable of atomic resolution
- Change in cantilever oscillation, due to tip-sample interaction, results in a topographical surface map
- Advantages over other microscopes:
- · unlike electron microscopes, can image samples in air and under liquids
- · unlike STM, can image non-conductive samples
- Mode of operation depends on quality factor, $Q = f_0 / \Gamma$, where f_0 = resonance frequency and Γ = bandwidth of resonance curve

Operating Modes

Both modes maintain tip-sample force (F, and hence tipsample distance, z) and cantilever oscillation amplitude (A) and frequency (f) constant, but do so by different means.

Mode	Amplitude modulation (AM)	Frequency modulation (FM)
Because the AFM is operated in, quality factor (Q) is, making it easier to detect change in when resonance curve shifts in response to F change. Therefore, feedback maintains F constant (by	Air Low Amplitude	Vacuum High Frequency
adjusting z) based on the calculation	$F = A_0 - A_1 $	$F = f_0 - f_1 $

Operation Conditions

- FM mode-provides most precise tip-sample force-distance control
- Room-temperature and medium vacuum (3 Pa, necessary for maintaining high Q ≈ 20.000)-minimizes setup time and complexity compared to conventional ultra-high vacuum (UHV) FM-AFM systems

Imaging

Search for a clean. flat surface Calculate nm-toamplitude-setpoint

relation by comparing the z of different setpoints

Gold Deposition

- Re-adjust setpoints for cantilever oscillation amplitude and tip-sample distance
- Turn off tip-sample distance feedback
- Pulse sample with a negative bias to
- deposit Au dot Turn feedback on again, retract and move tip to next
- deposition location, then turn feedback off again
- To create a wire, apply repeated pulses such that dots overlap

SEM-EDS images showing Si

AFM System Configuration

and Au content areas on in

tip; complete overlap indicates complete coating

images taken at two

Au*

Interface box connects AFM head (Shimadzu SPM-9600) to