Eric Rosenthal^{1,2}, A.R.T. Nugraha³, E.H. Hasdeo³ Riichiro Saito³ ¹NanoJapan IREU, Rice University, ²University of Pennsylvania, ³Tohoku University E-mail: ericros@sas.upenn.edu Web: http://flex.phys.tohoku.ac.jp/

Calculation Method

Coherent phonon model for radial breathing mode in carbon nanotubes

work supported by the National Science Foundation's Partnerships for International Research & Education Program (OISE-0968405).

Results and Discussion

Coherent phonon model for radial breathing mode in carbon nanotubes

A femtosecond laser pulse interacting with a single wall carbon nanotube (SWNT) sample can induce photo-excited carriers called excitons, which are electron-hole pairs bound by the Coulomb interaction. Before exciton recombination, the lattice starts to vibrate coherently through the exciton-phonon interaction. This interaction becomes the driving force for coherent vibrations of the nanotube. Of the many different types of phonon modes, we specifically consider the radial breathing mode (RBM) of the SWNT in which the tube diameter expands and contracts in the radial direction.

The excitonic driving force is spatially localized in a Gaussian shape along the tube axis, but we expect diffusion of displacement because experiments show uniform displacement of diameter. To understand the coherent RBM motion we model the nanotube as a one dimensional string with string displacement equivalent to change in nanotube diameter. We solve for the vibration amplitude as a function of space and time using the Klein-Gordon equation, which reproduces the RBM phonon dispersion. We solve this equation numerically using Mathematica, and considering realistic parameters of a nanotube. The calculated coherent motion provides a physical explanation for why a localized driving force gives the oscillation of reflectance in coherent phonon experiments.

Eric Rosenthal, University of Pennsylvania A.R.T. Nugraha, Tohoku University E.H. Hasdeo, Tohoku University Riichiro Saito, Tohoku University