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Current single-walled carbon nanotube (SWNT) synthesis methods can produce only a 

mixture of both metallic and semiconducting chiralities.  One common method for 

measuring the relative abundance of each chirality is through the use of optical 

absorption spectroscopy.  However, since the optical transition energies of SWNTs are 

highly dependent on diameter, chiral angle, and electronic type; and as-produced 

samples typically contain many different (n,m) species, absorption spectra appear 

highly congested due to overlap in between multiple optical features.  As a result, 

relative abundance is difficult to extract from such measurements.  The use of 

resonant Raman spectroscopy, however, over a wide excitation wavelength range can 

avoid such difficulties and is one of the most effective methods to clearly identify 

chirality. We have set up a high resolution, CW resonant Raman scattering spectroscopy 

system with a tunable dye laser excitation to quantitatively determine the relative 

population of different (n,m) species in SWNT samples. Using a Rhodamine 6G dye 

laser pumped with a Nd:YAG laser, we have clearly identified members of the (8,8) and 

(9,9) metallic families as well as various small-diameter semiconductor chiralities.  By 

combining the diameter-dependent radial breathing mode (RBM) frequency with the 

at-resonance Raman intensity and electronic linewidth as measured from the excitation 

profile for said RBM, clear identification of not only chirality but also relative 

abundance was performed.  
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Current  SWNT synthesis methods can produce only a 
mixture of both metallic and semiconducting chiralities. 

Our aim is to quantitatively determine the relative 
population of different (n,m) species in SWNT samples. 

Single-walled carbon nanotubes (SWNTs) can be metallic 
or semiconducting according to their chiralities or (n,m ) 
species. 

Sample  

We have set up a high resolution, continuous  
wave(CW) resonant Raman scattering spectroscopy 
system with a tunable dye laser excitation. 
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Spectrometer 

Power : 5.0 W 
Wavelength : 518 nm 

Dye : Rhodamine 6G 
Wavelength : 584-616 nm 
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Raman experiments were performed on HiPco-produced SWNTs. 
The samples were excited by tunable dye laser with powers of 
100mW focused in to the nanotube solution. 

n – m = 3M + θ	


	


Radial Breathing Mode (RBM) 	


• RBM was used to determine the tube 
diameter of a specific (n,m) species and the 
diameter distribution of a nanotube sample. 

• When combined with excitation energy 
information, RBM can give (n,m) species 
identification 

Raman Excitation Profile (REP)	
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• Vertical slice Raman map. 
• When combined with RBM frequency (i.e. 
diameter) we can uniquely identify (n,m)  

Absorption spectrum  
of As-produced SWNT  

Cylindrical lens	
 Resonant Raman scattering map  	
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• Identification of different chiralities in As-
produced SWNT with a tunable dye laser 

• Making a dark field  spectroscopy system 
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