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The discreteness of electrical charges leads to unavoidable current fluctuations called “shot noise.”
Shot noise measurements reveal more detailed information about the electron transport of a system
than conventional electrical measurements. Shot noise is measured as the spectral density, S, of
current fluctuations per unit bandwidth. For classical uncorrelated electrons, Poisson statistics
predicts S = 2el, where e is the electronic charge and I is the average DC current. The Fano
factor, F', in a general system is defined as, S(f) = 2elF. The Fano factor has been investigated
in a number of systems, theoretically and experimentally, and it changes depending on the channel
properties. A recent theoretical prediction suggests that in the presence of electronic coupling to
local vibrational modes, a large Fano factor would be observed. Such a system cannot be realized
until recent creation of single molecular devices. In these devices, molecules vibrate as electrons
transport through them. Therefore this is the ideal system to study shot noise in vibrating channels.

Here, we present preliminary measurements of shot noise in single Cgo devices at low temperature
down to 4.2K using a high frequency approach coincident with DC measurements.
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