ULTRA-BROADBAND PHOTODETECTORS BASED ON MACROSCOPICALLYALIGNED ULTRA-LONG SINGLE-WALLED CARBON NANOTUBES

S. Nanot ${ }^{1}$, Robert H.Hauge ${ }^{2}$, J. Kono ${ }^{1}$
${ }^{1}$ Department of Electrical \& Computer Engineering, Rice University, Houston, TX, U.S.A
${ }^{2}$ Department of Chemistry, Rice University, Houston, TX, U.S.A.

Optoelectronic devices based on carbon nanomaterials provide new opportunities for basic and applied studies. Strong Coulomb interactions among 1-D carriers and excitons in single-walled carbon nanotubes (SWNTs) are expected to significantly enhance light absorption, carrier generation, and transport. Here, we demonstrate that a two-terminal device consisting of macroscopically-aligned, ultralong SWNTs acts as a photodetector in an extremely wide spectral range covering the visible, near-infrared, and mid-infrared. We used films of SWNTs grown via chemical vapor deposition and laid down on $\mathrm{Si} / \mathrm{SiO}_{2}$ substrates. Metallic electrodes were then deposited with distances of $50 \mu \mathrm{~m}$ between contacts. Scanning photocurrent and photovoltage measurements, together with in-situ imaging, were successfully made at wavelengths of 658 nm and 1350 nm with a focal-point diameter of $\sim 1 \mu \mathrm{~m}$; local photocurrent or photovoltage as high as $333 \mathrm{nA} / \mathrm{mW}$ and $1350 \mu \mathrm{~V} / \mathrm{mW}$ have been achieved. A careful analysis of the observed positiondependent response suggests the presence of a built-in potential at the nanotube-electrode interface. Furthermore, we explored this effect to design detectors with asymmetric contacts using different metal electrodes such as $\mathrm{Au}, \mathrm{Pd}, \mathrm{Ag}$, and Ti . This allowed us to observe significant photoresponse under global illumination, obtaining a photovoltage of $6.5 \mu \mathrm{~V} / \mathrm{mW}$ under visible excitation, as well as go to the mid-infrared range. We detected photoresponse signal up to $3.2 \mu \mathrm{~m}$ wavelength using an optical parametric oscillator and are collecting data using quantum cascade lasers operating at $10 \mu \mathrm{~m}$. Hence, these devices are very promising for potential solar cell as well as broadband photodetector applications.

