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Graphene Background
• Graphene Characteristics:

- Single layer of carbon atoms
- Zero-gap semiconductor
- Exceptional ballistic transport 

properties
- High strength
- High thermal conductivity

• Observe the low energy carrier dynamics of graphene
- Understand the effects of doping on the transmittance
- Understand the effects of temperature on the 

transmittance
• Explain transmission trends within the Mikhailov theoretical 

model
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• Reasons for high transmittance:
- Both graphene samples had low 

absorbance or high reflection
- Different substrate sample 

thicknesses
• Doping and Temperature Effects

- Doping increases intraband
absorbance

- Temperature broadens the zero-
frequency peak of the intraband
conductivity

• Monolayer graphene has 
either a low absorbance or 
high reflection

• Doping is observed to 
decrease transmittance

• Increasing temperature is 
observed to increase 
transmittance

Fig 1: Graphene’s hexagonal 
crystal lattice of carbon atoms

Fig 3: Specimens used 
in this experiment

• Controlled doping is an essential 
tool in the path to semiconductor 
applications
- N-doping:

n-type semiconductor
- B-doping:

p-type semiconductor

• Terahertz Time-Domain Spectroscopy (THz-TDS) is a 
method of determining a number of material properties 
including:
- refractive index
- dielectric constant

- complex conductivity
- Transmission coefficient
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Pure and Doped Graphene

Temperature Dependence

• Production of samples
- CVD on Copper film
- N-doped produced by introducing 

ammonia
- Transferred to sapphire substrate

• Measurement and Analysis
- Used THz-TDS to get waveforms
- Compared substrate and sample
- Applied FFT to find transmittance

• Two methods of reducing relative humidity
- Nitrogen purging
- Vacuum pumping

• Two different emitters
- Low Temperature grown Gallium Arsenide (LT GaAs)
- 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST)

• Measurements taken from 10K-300K
- Used Helium to lower the temperature of the cryostat

• Data averaged over at least 3 readings

Sources:
Fig 2: Dacheng Wei, Nano Letters 2009 9 (5), 1752-1758
Fig 4: http://www.riken.jp/lab-www/THz-img/English/annual_gas.htm
Fig 6: S. A. Mikhailov, Microelectronics Journal 40, 712 (2009)

• Pure graphene has a higher transmittance than doped graphene 
in the range of .5 – 2.5 THz

• Around .7 THz, there is a peak that may be attributed to 
absorbance

• Both pure and doped have very high transmittance

Fig 2: Vacancies and substitutions 
in the crystal lattice from doping 

Fig 4: An example room temperature THz-TDS set up

Fig 5: Doping Effects on 
Fermi Energy due to carrier 
densities
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• Positive correlation between temperature and transmittance
• Scattering can be observed in higher energy regions
• Gap suggests a critical temperature between 175K and 250K

Normalized Low Temperature 
Pure Transmittance

Fig 6: Conductivity according to the 
Mikhailov theoretical model
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