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Light microscopy is non-destructive and preferred over electron microscopy for imaging
biological samples. Fluorescence light microscopy is particularly useful for tracking
individual molecules or staining certain organelles, which may not be clearly visible
during bright-field observation. Fluorescence signals are often limited by the effect of
photobleaching, which reduces the signal intensity over time. Attempting to increase the
signal by increasing the intensity of the excitation laser only adds to the photobleaching,
and is not effective. Molecules undergo photobleaching from the triplet state, which has a
theoretical lifetime of a few ps in fluorescence molecules such as Rhodamine 6G (R6G),
used in this study. When molecules are continuously excited further from the triplet state,
the risk of photobleaching increases. If the molecules can first relax to the triplet state,
they can then be safely excited again to release more photons, which results in a gain in
fluorescence signal without photobleaching. In this study, we modulate the intensity of a
continuous wave (CW) laser with an acousto-optic modulator (AOM) at a frequency
range of 0.1 — 10 MHz. Preliminary results suggest that amplitude modulation causes a
decrease in fluorescence decay and increased fluorescence signal in R6G thin film
samples compared to CW laser excitation. Decay rate and initial fluorescence signal were
found to be correlated with excitation intensity. We find that manipulating the
modulation parameters gives a frequency and wave shape that together reduce
photobleaching in fluorescent molecules. Incorporating this modulation scheme into
fluorescence microscopy should significantly improve fluorescence imaging for
biological and other applications.



ADbstract

Light microscopy is non-destructive and preferred over electron microscopy for
Imaging biological samples. Fluorescence light microscopy is particularly
useful for tracking individual molecules or staining certain organelles, which
may not be clearly visible during bright-field observation. Fluorescence signals
are often limited by the effect of photobleaching, which reduces the signal
Intensity over time. Attempting to increase the signal by increasing the intensity
of the excitation laser only adds to the photobleaching, and is not effective.
Molecules undergo photobleaching from the triplet state, which has a
theoretical lifetime of a few us in fluorescence molecules such as Rhodamine
6G (R6G), used In this study. When molecules are continuously excited further
from the triplet state, the risk of photobleaching increases. If the molecules can
first relax to the ground state, they can then be safely excited again to release
more photons, which results in a gain in fluorescence signal without
photobleaching. In this study, we modulate the intensity of a continuous wave
(CW) laser with an acousto-optic modulator (AOM) at a frequency range of 0.1
— 10 MHz. Preliminary results suggest that amplitude modulation causes a
decrease In fluorescence decay and increased fluorescence signal in R6G thin
film samples compared to CW laser excitation. Decay rate and initial
fluorescence signal were found to be correlated with excitation intensity. We
find that manipulating the modulation parameters gives a frequency and wave
shape that together reduce photobleaching in fluorescent molecules.
Incorporating this modulation scheme into fluorescence microscopy should
significantly improve fluorescence Iimaging for biological and other
applications.

Purpose

°Fluorescent molecules
*Excited from ground state to

*Fluorescence microscopy
*Useful for imaging biological

samples singlet state by light
*Tracking individual molecules or  *Molecules move from singlet
staining organelles or proteins to triplet state (T1 or Tn) and

are more susceptible to
photobleaching
*Molecules relax for 3-5
microseconds (lifetime of
triplet state) before being
excited again

with fluorescent dyes

*Limited by decrease in signal

due to photobleaching
*Goal: reduce photobleaching to
reduce fluorescence decay and
Increase fluorescence yield
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(Right) Sine, square, and pulse
waves with a frequency of 1 MHz
are shown. These are compared
to two levels of continuous wave |
(CW) with no modulation. CW 1.2 | °
has the same peak intensity and
CW 0.6 has the same average
power as the 1 MHz sine wave.

(Left) Modulation
patterns line up with
excitation and
relaxation cycles to
only excite molecules
from the ground state.
Possible modulation
functions are shown
along with parameters
that can be varied.
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(Left) Fluorescence and (Right) absorption
examine the optical properties of Rhodamine 6G. The molecules are

excited at 488 nm to observe the f

spectra are shown to

uorescence spectra. Both spectra

show a red shift with an increase In concentration. Both fluorescence
Intensity and absorption increase with increasing concentrations.
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Results
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(Left) Fluorescence vs.

time graphs for 4

modulation conditions.
(A) CW no modulation.
(B) 0.3 MHz sine
modulation. (C) 1 MHz
sine modulation. (D) 10
MHz sine modulation.
Comparing (A) and (C)

shows that sine

modulation at 1 MHz
gives a slower decay
rate when compared to
no modulation case.

Comparing (B), (C), and (D) shows the effect of frequency. The
optimum frequency still needs to be determined.

(Right) Analysis of
mean expected decay
time determined from
exponential fitting of
curves shown above.
Blue bars show a
definite increase In
lifetime when
modulation is used.
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(Above) Normalized film fluorescence over time ‘imaged’ with
photon counter. Fluorescence intensity Is normalized by the 1
second time point to remove batch film effects. (Left) CW no
modulation. (Right) 1 MHz sine modulation.

Future Research

1. Determine exactly which modulation parameters are most effective
In preventing photobleaching.
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