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 Silicon microchips have continued to grow progressively smaller to meet the 
demands of a competitive market.  The next step in development will send the chips from 
micro-order to nano-order, giving rise to new and challenging complications.  Here, two 
methods are explored to develop such technology.  The first involves molecular beam 
epitaxial (MBE) growth of isotopically controlled Si-based quantum computers.  Manual 
scoring of isotopically pure 28-Si chip followed by kink-up DC correcting and 
subsequent 29-Si addition leaves equally distributed lines of 29-Si with controllable 
nuclear spin.  Capping the lines on one end with Ni/Fe magnets and on the other end with 
P atoms, individual spin can be read out and controlled using NMR.  The second method 
involves modifying the traditional Metal Oxide Semiconductor Field Effect Transistor 
(MOS FET) for successful nano-scale operation.  Excessive boron diffusion causes 
unwanted digital logic stage switching in nano-order MOS FET, so methods to control 
boron diffusion, transient and oxygen enhanced diffusion, are studied.   
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Abstract
Silicon microchips have continued to grow progressively smaller 
to meet the demands of a competitive market.  The next step in 
development will send the chips from micro-order to nano-order, 
giving rise to new and challenging complications.  Here, two 
methods are explored to develop such technology.  The first 
involves molecular beam epitaxial (MBE) growth of isotopically 
controlled Si-based quantum computers.  Manual scoring of 
isotopically pure 28-Si chip followed by kink-up DC correcting and 
subsequent 29-Si addition leaves equally distributed lines of 29-Si 
with controllable nuclear spin.  Capping the lines on one end with 
Ni/Fe magnets and on the other end with P atoms, individual spin
can be read out and controlled using NMR.  The second method 
involves modifying the traditional Metal Oxide Semiconductor 
Field Effect Transistor (MOS FET) for successful nano-scale 
operation.  Excessive boron diffusion causes unwanted digital 
logic stage switching in nano-order MOS FET, so methods to 
control boron diffusion, transient and oxygen enhanced diffusion, 
are studied. 

Building The All-Silicon Model

The All-Silicon Model

Background
- Gordon Moore’s Law: Market transistors need to 
progressively decrease in size by a factor of two every 
two years

-Quantum Challenge: Progressing from micro to 
nanoscale transistors presents new physical and 
methodological hurdles

-Adaptation versus Innovation:  Creating new transistor 
designs or reinventing old ones

- 29Si atoms are positioned regularly in chains in a 7-Tesla 
magnetic field

- A 2-Tesla Ni/Fe magnet at one end of the chain 
individualizes the spin of each 29SI atom

- Nuclear Magnetic Resonance (NMR) is used to locate each 
29Si atom and control its spin direction

- A phosphorus atom at the opposite end of the chain 
allows NMR to differentiate between multiple chains

- In the coming years, it is projected that exact positioning 
of 29Si and precise NMR readout will allow development of 
the first working All-Silicon Quantum Computer

1. Manual scoring of 28Si chips produces regular step arrays
2. Subsequent DC heating corrects nanoscale imperfections
3. Controlled exposure to natural Silicon allows chains of 29Si 

to form on the apex of each step

MOS FET Model
(Metal Oxide Semiconductor Field Effect Transistor)
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1. A current source and drain are connected 
to a silicon wafer

2. Positively charged B atoms are implanted 
in a neutral Si wafer at the source and drain

3. An  oxide layer is added above the channel 
between the source and drain

- When voltage is applied to the gate above 
the oxide layer, positive boron atoms 
accumulate between the source and drain, 
allowing the flow of current

- Gate voltage therefore controls the switch 
between transistor binary states

Nanoscale challenge:
- Annealing purifies transistors, but it also causes B atoms to diffuse

- Nanoscale channels carry current as a result of B diffusion

- The binary state becomes fixed; it is independent of gate voltage

- Boron diffusion must be controlled for nanoscale MOS FET to work furnace

7o Tilt 

0o Tilt 1.　The influence of the B ion implantation damage on TED

2.   The influence of OED during initial annealing

(Oxygen Enhanced Diffusion) Affect of presence of 02

3.   The influence of SiO2/Si interface during annealing

(Transient Enhanced Diffusion)

Three branches of diffusion studied

With or without SiO2(～20nm) films on the Si surface
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Amount of B ion implantation damage has no correlation with TED
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